Modelling synergistic effects of Pb and Pyrene on the toxicokinetic and biochemistry of the marine polychaete *Hediste diversicolor*

S. Bagwell, I.D. Green, R.J. Herbert

Faculty of Science and Technology, Bournemouth University, Wallisdown, Poole, Dorset, BH12 5BB, Great Britain.

Introduction

Within marine sediment, contamination may exist as complex mixtures of chemicals including both metals and polycyclic - aromatic hydrocarbons (PAH's). Consequently, it is important to understand the assimilation and biological effects these chemicals may exert upon benthic marine species [2] such as the marine polychaete *Hediste diversicolor*. The aims of this study: Determine the assimilation and excretion rates of individual concentrations and mixtures of Pb and Pyrene by *Hediste diversicolor*, identify metabolism of pyrene to its phase 1 product - 1-hydroxypyrene.

Experiment

66 *Hediste diversicolor* were placed into tanks containing 6Kg of spiked sediment and artificial sea water (15ppt) for 28 days. The conditions assessed: Pb 9.2 ppm, Pb 4.5 ppm, Pb 9.2 + Pyrene 970 ug/kg, Pb 4.5 ppm + Pyrene 480 ug/kg. Worms were removed for analysis every 7 days. Remaining worms were removed after 28 days then placed into tanks which contained clean sediment for a further 28 days. Worms were removed for analysis every 7 days.

Results

• Worm whole body concentrations from those exposed to Pb9.2 ppm were significantly higher ($F = 13.8$, $p = <0.05$) than those exposed to Pb9.2ppm and Pyrene 970 ug/kg.

• Worm whole body concentration from those exposed to Pb4.5 ppm were significantly higher ($F = 38.98$, $p = <0.05$) than those exposed to Pb4.5ppm and Pyrene 480 ug/kg.

• Pyrene was metabolised to its phase 1 product 1-Hydroxypyrene within 1-14 days.

• 1-Hydroxypyrene was excreted by day 14 in clean sediment conditions for both test series.

Conclusions

• Whole body worm concentrations for Pb were significantly higher for worms exposed to Pb than those exposed to Pb + Pyrene mixtures.

• Pyrene body concentrations were metabolised to the phase 1 product 1-Hydroxypyrene within 1-14 days.

• 1-Hydroxypyrene was excreted by day 14 in clean sediment conditions for both test series.

Future Work

• Model the bioaccumulation and excretion dynamics of Pb and Pb + Pyrene mixtures on *Hediste diversicolor*

• Analyse detoxification mechanisms in *Hediste diversicolor* associated to Pb and Pyrene exposure including reactive oxygen species

References
